1999 U 01 Sp 02

1. The Table below gives the values of ionisation energies 3 to 10 of calcium.

Ionisation Number		3	4	5	6	7	8	9	10
Ionisation Energies		4912	6474	8145	10496	12320 '	14207	18192	20385
(a)	Plot a graph of ionisation energy against the number of electrons removed. [4 marks]								
(b)	Comment on the shape of the graph.								[3 marks]
(C)	Deduce the orbital distribution of electrons 3 to 10 in calcium. [1 mark]								
(d)	Insert on the graph by sketching, the suggested values of the 1 st and 2 nd ionisation energies of calcium. [2 marks]								

- 4. Each of the statements labelled (i) to (v) below lists some physical properties of a pair of substances.
 - Water and argon both have relative molecular masses of 18. The boiling point of water is 100°C, but (i) that of argon is -186°C.
 - (ii) CO_2 and SiO_2 are both covalent molecules. However, CO_2 is a gas, but SiO_2 is a solid with a high melting point.
 - (iii) Neon and argon are both noble gases. The boiling point of neon is -245°C and the boiling point of argon is ~186°C.
 - (iv) Sodium and aluminium are both metallic elements. Sodium melts at 98°C and aluminium melts at 660°C.
 - (v) Sodium chloride is a high melting point solid whereas hydrogen chloride is a gas. For each of the statements labelled (i) to (v) above:
 - (a) Identify the types of forces operating.
 - (b) Account for any differences in the strengths of these forces and relate the nature and strength of [20 marks¹ the forces to the properties indicated in each pair.
- 5. (a) The graph below represents some volume and pressure relationships of a gas X at constant temperature.

- Using ANY TWO sets of data points from the graph, describe TWO relationships between the (i) pressure and volume of the gas X.
- (ii) Express the relationship derived in part (i) above mathematically and identify the law to which the relationship applies. [5 marks]
- (b) (i) State the meaning of the term 'ideal gas'.
 - (ii) Give the conditions under which a real gas approximates ideal gas behaviour.
 - (iii) Identify the factors responsible for deviations from ideal behaviour.
 - (iv) Explain how these factors lead to the above deviations.
- c) (i) Sketch a graph showing the relationship between the volume and temperature of a gas at constant pressure.
 - (ii) Indicate on your sketch the temperature at which the volume of an ideal gas becomes zero.

[3 marks]

[9 marks]

(d) 2.1%g of a diatomic gas was found to occupy a volume of 1.84 dm³ at 30°C. The pressure of the gas was 93.22 kPa. Calculate the relative molecular mass of the gas and suggest the possible identity of the gas.

2

 $(R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1})$

[3 marks]